
Web Server Design
Lecture 9 – Unsafe Methods

Old Dominion University
Department of Computer Science

CS 431/531 Fall 2019

Sawood Alam <salam@cs.odu.edu>

Original slides by Michael L. Nelson

2019-10-24

Unsafe Methods
• Safe defined in 4.2.1, RFC 7231
• Safe methods: read operations that do not

change the status of the server
– GET, HEAD, OPTIONS, TRACE
– n.b.: in practice, GET can have side effects:
http://www.foo.com/a/b/c.php?var1=foo&var2=bar

• Unsafe methods: write operations; change the
state of a resource
– PUT, POST, DELETE

Idempotent Methods

• Idempotent defined in 4.2.2 of RFC 7231
• Safe & Idempotent:

– GET (no side effects), HEAD, OPTIONS, TRACE
• Unsafe & Idempotent

– PUT, DELETE
• Unsafe & ~Idempotent

– POST, GET (w/ side effects)
• e.g. http://foo.edu/counter.cgi?action=increment&variable=x

PUT vs. POST

• PUT tells the server to use the uploaded entity to create a
resource at the specified URI
– Unix semantic equivalent:
echo “hello world” > /tmp/hw.txt

• POST tells the server to submit the uploaded entity to the
existing resource at the specified URI
– Unix semantic equivalent:
echo “hello world” | /usr/bin/spell

REST Idiom

• PUT / DELETE for existing URIs
– http://example.org/staff/nelson

• POST to a collection to create a new
resource
– http://example.org/staff/

POST
• If the request does not result in a resource that can be

identified with a URI, then the response codes should be:
– 200 OK

• An entity describing the result
– 204 No Content

• No description; user agent does not navigate to a new page/URI
• If the result does produce a URI identifiable resource, the

result should be:
– 201 Created, and:
– “Location” header specifying the new URI

PUT
• If a new resource is created:

– 201 Created
• Response code is returned

• If an existing resource is modified:
– 200 OK

• If there is an entity describing the results
– 204 No Content

• If there is no entity describing the results

DELETE
• If the URI is successfully deleted, then valid

response codes are:
– 200 OK

• If there is an entity describing the results
– 204 No Content

• If there is no entity describing the results
– 202 Accepted

• The request was understood, queued and might be successful in
the future

• An entity is returned with this response, but there is no provision
for the server to relay the eventual success or failure of the
original request

Failure Response Codes
• 403 Forbidden

– Server understood the request, but will not honor it
– Authentication will not help; do not repeat

• 405 Method Not Allowed
– Method/URI combination not valid
– cf. "501 Not Implemented"!

• 411 Length Required
– “Content-Length” header is missing on client upload

• 413 Request Entity Too Large
– Configurable server value; prevent DOS attacks

• Note the “Content-Length” header may lie!
• 414 Request-URI Too Long

– Configurable server value; prevent DOS attacks
• 415 Unsupported Media Type

– E.g., server wants “application/json” but received “image/jpeg”

Reality…

• PUT and DELETE are rarely (never?) implemented as
specified in the RFC
– Security considerations, limited client support, incomplete semantics
– PUT sometimes implemented by redirecting to a CGI script:

• http://httpd.apache.org/docs/current/mod/mod_actions.html
– Web Distributed Authoring and Versioning (WebDAV) is the preferred

implementation for “write” operations
• http://www.webdav.org/

• We will do neither approach; we’ll implement native support
for unsafe methods

http://httpd.apache.org/docs/current/mod/mod_actions.html
http://www.webdav.org/

Allowing PUT and DELETE
• Recursively allow PUT / DELETE in a directory via

these directives in WeMustProtectThisHouse! file:
– ALLOW-PUT
– ALLOW-DELETE

• Orthogonal to the uid/passwd info:

ALLOW-PUT
ALLOW-DELETE
#
authorization-type=Basic
#
realm="Fried Twice"
#
bda:9177d249338e2b2394f65faa17a46a29
jbollen:6c4bea736ded1341eb8c507d4b0baa5b
mln:ae33d20c70e59a4c734d9f2c19c0df56
vaona:81e5a6b538844ed0c494149a96310a85

PUT Example
PUT /~mln/fairlane.txt HTTP/1.1
Host: www.cs.odu.edu
Connection: close
User-Agent: CS 595-s07 Automatic Testing Program
Content-type: text/plain
Content-length: 193

 // \\
---------//--------------\\-------
| __ __ |
|--/ \--------------------/ \---|
 __/ __/

DELETE Example

DELETE /~mln/fairlane.txt HTTP/1.1
Host: www.cs.odu.edu
Connection: close
User-Agent: CS531 Automated Tester

Reminder: OPTIONS
• Be sure to give the correct values for the

OPTIONS method
– PUT, DELETE depend on the values in

“WeMustProtectThisHouse!”
– POSTing to URI that is not an

executable file?
• Apache seems to allow it…

– But not to directories
– 2018-11-07 update: Apache allows

POST to both now
• We will not (status 405)

$ telnet www.cs.odu.edu 80
Trying 128.82.4.2...
Connected to xenon.cs.odu.edu.
Escape character is '^]'.
POST /~mln/index.html HTTP/1.1
Connection: close
Host: www.cs.odu.edu

HTTP/1.1 200 OK
Date: Mon, 17 Apr 2006 14:54:07 GMT
Server: Apache
X-Powered-By: PHP/4.4.2
Content-Length: 5357
Connection: close
Content-Type: text/html

<html>
<head>
<title>Home Page for Michael L.
Nelson</title>
[deletia]

$ telnet www.cs.odu.edu 80
Trying 128.82.4.2...
Connected to xenon.cs.odu.edu.
Escape character is '^]'.
POST /~mln/pubs/ HTTP/1.1
Host: www.cs.odu.edu
Connection: close

HTTP/1.1 404 Not Found
Date: Mon, 17 Apr 2006 23:50:59 GMT
Server: Apache
Content-Length: 272
Connection: close
Content-Type: text/html;
charset=iso-8859-1
[deletia]

POST

• Typically the result of HTML “Forms”
– http://www.w3.org/TR/REC-html40/interact/forms.html#h-17.13.4

• Two types of values in the client’s “Content-type”
request header:
– application/x-www-form-urlencoded

• (original & default)
– multipart/form-data

• Introduced in RFC-1867; allows file upload
– http://www.ietf.org/rfc/rfc1867.txt

http://www.ietf.org/rfc/rfc1867.txt

HTML Examples

 <FORM action="http://server.com/cgi/handle"
 enctype="multipart/form-data"
 method="post">
 <P>
 What is your name? <INPUT type="text" name="submit-name">

 What files are you sending? <INPUT type="file" name="files">

 <INPUT type="submit" value="Send"> <INPUT type="reset">
 </FORM>

 <FORM action="http://server.com/cgi/handle"
 enctype= "application/x-www-form-urlencoded"
 method="post">
 <P>
 What is your name? <INPUT type="text" name="submit-name">

 <INPUT type="submit" value="Send"> <INPUT type="reset">
 </FORM>

Based on examples from: http://www.w3.org/TR/REC-html40/interact/forms.html#h-17.13.4
The “encoding” in “enctype” refers to “urlencoded”, not “Content-Encoding”

application/x-www-form-urlencoded
POST /~mln/foo.cgi HTTP/1.1
Host: www.cs.odu.edu
Connection: close
Referer: http://www.cs.odu.edu/~mln/bar.html
User-Agent: CS 595-s06 Automatic Testing Program
Content-type: application/x-www-form-urlencoded
Content-Length: 134

action=restore&manufacturer=ford&model=fairlane+500XL&year=1966
&status=modified&engine=427+sideoiler&transmission=4+speed+toploader

Functionally the same as (modulo a possible 414 response):

GET /~mln/foo.cgi?action=restore&manufacturer=ford&model=fairlane+500XL&year=1966
&status=modified&engine=427+sideoiler&transmission=4+speed+toploader HTTP/1.1
Host: www.cs.odu.edu
Connection: close
Referer: http://www.cs.odu.edu/~mln/bar.html
User-Agent: CS 595-s06 Automatic Testing Program

This has obvious limitations for sending 1) a lot of data, 2) non-ascii/binary data

multipart/form-data
(with file upload)

POST /~mln/foo.cgi HTTP/1.1
Host: www.cs.odu.edu
Connection: close
Referer: http://www.cs.odu.edu/~mln/bar.html
User-Agent: CS 595-s06 Automatic Testing Program
Content-type: multipart/form-data; boundary=----------0xKhTmLbOuNdArY
Content-Length: 698

------------0xKhTmLbOuNdArY
Content-Disposition: form-data; name=”action"

restore
------------0xKhTmLbOuNdArY
Content-Disposition: form-data; name=”manufacturer"

ford
------------0xKhTmLbOuNdArY
Content-Disposition: form-data; name=”model"

fairlane 500xl
------------0xKhTmLbOuNdArY
Content-Disposition: form-data; name=”year"

1966
------------0xKhTmLbOuNdArY
Content-Disposition: form-data; name=”picture"; filename="fairlane.txt"
Content-Type: text/plain

 // \\
---------//--------------\\-------
| __ __ |
|--/ \--------------------/ \---|
 __/ __/

------------0xKhTmLbOuNdArY--

Note the “--” to indicate the end

It’s foo.cgi’s responsibility to unpack most of
this data, but it’s the server’s responsibility
to set up various environment variables
(which will be covered in the next lecture)

