Web Server Design

Lecture 9 — Unsafe Methods

Old Dominion University

Department of Computer Science
CS 431/531 Fall 2019

Sawood Alam <salam@cs.odu.edu>

2019-10-24

Original slides by Michael L. Nelson

Unsafe Methods

« Safe defined in 4.2.1, RFC 7231

» Safe methods: read operations that do not

change the status of the server
— GET, HEAD, OPTIONS, TRACE

— n.b.: in practice, GET can have side effects:
http://www.foo.com/a/b/c.php?varl=foo&var2=bar

» Unsafe methods: write operations; change the

state of a resource
— PUT, POST, DELETE

ldempotent Methods

ldempotent defined in 4.2.2 of RFC 7231

Safe & I[dempotent:
— GET (no side effects), HEAD, OPTIONS, TRACE

Unsafe & ldempotent
— PUT, DELETE

Unsafe & ~ldempotent
— POST, GET (w/ side effects)

®* €.0. nttp://foo.edu/counter.cgi?action=increment&variable=x

PUT vs. POST

« PUT tells the server to use the uploaded entity to create a
resource at the specified URI
— Unix semantic equivalent:
echo “hello world” > /tmp/hw.txt

* POST tells the server to submit the uploaded entity to the
existing resource at the specified URI

— Unix semantic equivalent:
echo “hello world” | /usr/bin/spell

REST Idiom

« PUT / DELETE for existing URIs
— http://example.org/staff/nelson

e POST to a collection to create a new
resource

— http://example.org/staff/

POST

* |f the request does not result in a resource that can be
identified with a URI, then the response codes should be:

— 200 OK
« An entity describing the result

— 204 No Content
* No description; user agent does not navigate to a new page/URI
* |f the result does produce a URI identifiable resource, the
result should be:
— 201 Created, and:
— “Location” header specifying the new URI

PUT

* |f a new resource is created:
— 201 Created
» Response code is returned
* If an existing resource is modified:
— 200 OK

* If there is an entity describing the results
— 204 No Content

* If there is no entity describing the results

DELETE

* |f the URI is successfully deleted, then valid
response codes are:

— 200 OK

* If there is an entity describing the results

— 204 No Content

* If there is no entity describing the results

— 202 Accepted

* The request was understood, queued and might be successful in
the future

« An entity is returned with this response, but there is no provision
for the server to relay the eventual success or failure of the
original request

Failure Response Codes

403 Forbidden
— Server understood the request, but will not honor it
— Authentication will not help; do not repeat
405 Method Not Allowed
— Method/URI combination not valid
— cf. "501 Not Implemented"!
411 Length Required
— “Content-Length” header is missing on client upload
413 Request Entity Too Large

— Configurable server value; prevent DOS attacks
* Note the “Content-Length” header may lie!

414 Request-URI Too Long
— Configurable server value; prevent DOS attacks
415 Unsupported Media Type
— E.g., server wants “application/json” but received “image/jpeg”

Reality...

« PUT and DELETE are rarely (never?) implemented as
specified in the RFC
— Security considerations, limited client support, incomplete semantics

— PUT sometimes implemented by redirecting to a CGl script:
* http://httpd.apache.org/docs/current/mod/mod_actions.html

— Web Distributed Authoring and Versioning (WebDAV) is the preferred
implementation for “write” operations

* http://www.webdav.org/

* We will do neither approach; we’ll implement native support
for unsafe methods

http://httpd.apache.org/docs/current/mod/mod_actions.html
http://www.webdav.org/

Allowing PUT and DELETE

* Recursively allow PUT / DELETE in a directory via
these directives in WeMustProtectThisHouse! file:
— ALLOW-PUT
— ALLOW-DELETE

» Orthogonal to the uid/passwd info:

ALLOW-PUT

ALLOW-DELETE

#

authorization-type=Basic

#

realm="Fried Twice"

#

bda:9177d249338e2b2394f65faal7a46a29
Jjbollen:6cd4bea’736dedl1341eb8c507d4b0baabb
mln:ae33d20c70e59a4c734d9f2c19c0df56
vaona:81e5a6b538844ed0c494149a96310a85

PUT Example

PUT /~mln/fairlane.txt HTTP/1.1

Host: www.cs.odu.edu

Connection: close

User-Agent: CS 595-s07 Automatic Testing Program
Content-type: text/plain

Content-length: 193

DELETE Example

DELETE /~mln/fairlane.txt HTTP/1.1
Host: www.cs.odu.edu

Connection: close

User-Agent: CS531 Automated Tester

u - $ telnet www.cs.odu.edu 80
Trying 128.82.4.2...
- Connected to xenon.cs.odu.edu.
E

scape character is '"]'.
POST /~mln/index.html HTTP/1.1
Connection: close

- Be sure to give the correct values for the =~ = oo

HTTP/1.1 200 OK

OPTIONS method Date: Mon, 17 Apr 2006 14:54:07 GMT

Server: Apache
X-Powered-By: PHP/4.4.2

— PUT, DELETE depend on the values in/ o o
“WeMustProtectThisHouse!” S

<html>
<head>

— POSTing to URI that is not an <Eitienons page for Hicnasl 1.
executable file?
* Apache seems to allow it... ST ST
— But not to directories

POST /~mln/pubs/ HTTP/l.i
— 2018-11-07 update: Apache allows connsction: closs
POST to bOth nOW gzzZ/IMin?O$7N;;ngggz 23:50:59 GMT
* We will not (status 405) S

Content-Type: text/html;
charset=1is0-8859-1
[deletia]

Escape character is '~]'

POST

 Typically the result of HTML “Forms”

— http://www.w3.0rg/TR/REC-html40/interact/forms.html#h-17.13.4

« Two types of values in the client’s “Content-type”
request header:
— application/x-www-form-urlencoded
« (original & default)

— multipart/form-data

* Introduced in RFC-1867; allows file upload
— http://www.ietf.org/rfc/rfc1867.txt

http://www.ietf.org/rfc/rfc1867.txt

HTML Examples

<FORM action="http://server.com/cgi/handle"
enctype= "application/x-www-form-urlencoded"
method="post">
<pP>
What 1s your name? <INPUT type="text" name="submit-name">

<INPUT type="submit" value="Send"> <INPUT type="reset">
</FORM>

<FORM action="http://server.com/cgi/handle"
enctype="multipart/form-data"
method="post">
<pP>
What 1s your name? <INPUT type="text" name="submit-name">

What files are you sending? <INPUT type="file" name="files">

<INPUT type="submit" value="Send"> <INPUT type="reset">
</FORM>

Based on examples from: http://www.w3.org/TR/REC-html40/interact/forms.html#h-17.13.4
The “encoding” in “enctype” refers to “urlencoded”, not “Content-Encoding”

application/x-www-form-urlencoded

POST /~mln/foo.cgi HTTP/1.1

Host: www.cs.odu.edu

Connection: close

Referer: http://www.cs.odu.edu/~mln/bar.html
User-Agent: CS 595-s06 Automatic Testing Program

Content-type: application/x-www-form-urlencoded
Content-Length: 134

action=restore&manufacturer=fordé&émodel=fairlane+500XL&year=1966
&status=modified&engine=427+sideoiler&transmission=4+speed+toploader

Functionally the same as (modulo a possible 414 response):

GET /~mln/foo.cgi?action=restore&manufacturer=fordémodel=fairlane+500XL&year=1966
&status=modified&engine=427+sideociler&transmission=4+speed+toploader HTTP/1.1
Host: www.cs.odu.edu

Connection: close

Referer: http://www.cs.odu.edu/~mln/bar.html

User-Agent: CS 595-s06 Automatic Testing Program

This has obvious limitations for sending 1) a lot of data, 2) non-ascii/binary data

POST /~mln/foo.cgi HTTP/1.1

Host: www.cs.odu.edu -
Connection: close I I I I r rI I I_
Referer: http://www.cs.odu.edu/~mln/bar.html

User-Agent: CS 595-s06 Automatic Testing Program
Content-type: multipart/form-data; boundary=---------- 0xKhTmLbOuNdArY

(with file upload)

———————————— O0xKhTmLbOuNdArY
Content-Disposition: form-data; name="action"

———————————— O0xKhTmLbOuNdArY
Content-Disposition: form-data; name="manufacturer"

It's foo.cgi’s responsibility to unpack most of

ford . " y T
____________ 0xKhTmLOOUNAALY this data, but it's the server’s responsibility
Content-Disposition: form-data; name="model" to set up various environment variables
fairlane 500x1 (which will be covered in the next lecture)
———————————— 0xKhTmLbOuNdArY

Content-Disposition: form-data; name="year"

———————————— O0xKhTmLbOuNdArY
Content-Disposition: form-data; name="picture"; filename="fairlane.txt"
Content-Type: text/plain

D Ty Note the “--” to indicate the end

